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Abstract. Consider two bounded domains Ω and Λ in R2, and two sufficiently
regular probability measures µ and ν supported on them. By Brenier’s theorem,
there exists a unique transportation map T satisfying T#µ = ν and minimizing the
quadratic cost

∫
Rn |T (x) − x|2dµ(x). Furthermore, by Caffarelli’s regularity theory

for the real Monge–Ampère equations, if Λ is convex, T is continuous.
We study the reverse problem, namely, when is T discontinuous if Λ fails to

be convex? We prove a result guaranteeing the discontinuity of T in terms of the
geometries of Λ and Ω in the two-dimensional case. The main idea is to use tools
of convex analysis and the extrinsic geometry of ∂Λ to distinguish between Brenier
and Alexandrov weak solutions of the Monge–Ampère equation. We also use this
approach to give a new proof of a result due to Wolfson and Urbas.

We conclude by revisiting an example of Caffarelli, giving a detailed study of a
discontinuous map between two explicit domains, and determining precisely where
the discontinuities occur.

1. Introduction

Much work has gone into finding sufficient conditions for the optimal transportation
map (OTM) to be continuous. According to Caffarelli [1], the OTM between two
smooth densities (uniformly bounded away from zero and infinity) defined on bounded
domains in Rn with smooth boundaries is continuous when the target domain is convex.
When n = 2, Figalli [4, Theorem 3.1] showed that even when the target domain is not
convex, the OTM is still continuous outside a set of measure zero. This result has
subsequently been extended to n > 2 by Figalli and Kim [5]. These results have
also been studied for Riemannian manifolds, see the recent survey by De Philippis
and Figalli [2]. However, there seems to be no known condition guaranteeing the
discontinuity of planar OTMs. The main result of this article is such a condition.

In the present article we restrict ourselves to n = 2. Throughout this article, we
denote the uniform probability measures on Ω and Λ by

µ :=
1

|Ω|
1Ω and ν :=

1

|Λ|
1Λ,

respectively. We suppose for simplicity that Ω and Λ have unit area, i.e., |Ω| = |Λ| = 1.
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Of course, one could consider more general probability measures, and certainly the
results we discuss below carry over to measures with smooth densities that are uniformly
bounded away from zero and from above. Our main interest is in the following:

Problem 1. Give conditions on Ω and Λ guaranteeing the discontinuity of the optimal
transportation map from µ to ν.

The main result of this note is a sufficient condition guaranteeing the discontinuity
of the OTM between two domains in R2 assuming the source domain Ω is convex. This
condition can be phrased solely in terms of the geodesic curvature of the boundary of
the target domain. Moreover, we give examples to show that the numerical constant
in our condition is essentially sharp. Nevertheless, we show that the condition is not
a necessary one for discontinuity. In addition, we give an alternative proof of a result
of Wolfson and Urbas on the nonexistence of an OTM that extends smoothly to the
boundary between arbitrary domains in R2. Our methods are different from theirs
in that we rely on cyclical monotonicity. This is what allows us to prove interior
discontinuity as opposed to just non-smoothness up to the boundary. Finally, we revisit
an example of Caffarelli and analyze precisely where the discontinuities occur using
symmetry arguments and results of Caffarelli and Figalli. Unlike Caffarelli, we give a
constructive proof of the discontinuity, and quantify where and how this discontinuity
appears.

This note is organized as follows: In Section 2, we state and prove our conditions
for discontinuity. We also give several examples illustrating when these conditions do
and do not hold. Then, in Section 3, we consider a concrete example (which we term
the “squareman”) of an optimal map between two domains in which we can precisely
determine how the map fails to be continuous. Finally, in Appendix A, we state and
prove several lemmas that we need for the proof of the curvature condition.

2. A sufficient condition for discontinuity

In this section we derive a sufficient condition for the discontinuity of the OTM
between Ω and Λ based on the geometry of the boundaries. We further show how our
method proves a result of Wolfson, which was subsequently refined by Urbas. It is
interesting to note that while Wolfson’s original proof uses symplectic geometry, our
approach is based on convex analysis.

Consider a simple closed C2 curve C ⊂ R2, and let n denote the inward-pointing
unit normal along C. Given a unit-speed parametrization γ : I → R2 of C (here, I ⊂ R
denotes an interval, which we can assume equals [0, L] without any loss of generality),
the curvature of C is defined to be the function κ : C → R satisfying γ′′ = κn. Note
that since we have defined the signed curvature with respect to the inward pointing
unit normal, it is independent of the orientation of the curve.

In this article, we will refer numerous times to connected subsets or connected com-
ponents of a simple (possibly closed) curve. Both of these simply refer to a subset of the
(image of the) curve which is connected (and hence, path connected) in the subspace
topology induced from R2. In particular, we are not referring to maximally (path) con-
nected components of the curve. Since a continuous bijection from a compact space to
a Hausdorff space is automatically a homeomorphism, and all our curves have domain
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[0, 1] or S1, it follows that a subset of the curve γ is connected if and only if it is of the
form γ(I), where I is a sub-interval of [0, 1] or S1.

Theorem 2. Let Ω and Λ be bounded, connected, simply connected open domains in
R2 such that ∂Ω and ∂Λ are C3, closed curves. Assume Ω is convex. Equip Ω and Λ
with the uniform measures µ and ν. Let κ∂Ω and κ∂Λ be the signed curvatures of ∂Ω
and ∂Λ with respect to the corresponding inward-pointing unit normal fields. If there
exists a connected subset J ⊂ ∂Λ with

(1)

∫
J
κ∂Λ < −π,

then T1, the OTM from Ω to Λ, is discontinuous.

We employ similar techniques, together with an additional modification, to give a
new proof of the following result due to Wolfson and Urbas [10, 7].

Theorem 3 (Wolfson and Urbas). Let Ω and Λ be two bounded, connected, simply
connected domains in R2 with C2 boundaries. Let κ∂Ω and κ∂Λ denote the signed
curvatures (as defined above) of the two boundaries. Assume that

(2) inf
J⊂∂Λ

∫
J
κ∂Λ ≤ inf

I⊂∂Ω

∫
I
κ∂Ω − π,

where I and J are connected subsets of ∂Ω and ∂Λ, respectively. Then there does not
exist a C1-diffeomorphism T1 : Ω→ Λ whose restriction to Ω is an OTM.

When Ω is convex, of course κ∂Ω ≥ 0. One may ask whether (1) may be weakened.
Below, we will construct an example (Example 6) to show that at least when the C3

hypothesis in Theorem 2 is replaced with piecewise smooth, the constant −π in (1)
cannot be increased. However, (1) is not a necessary condition: in Section 3 we will
construct an example where Ω is convex and Λ has a connected subset of total curvature
of at most −π

2 , but OTM(Ω,Λ) is discontinuous.
Condition (2) is also not necessary: below (Example 5), we construct Ω and Λ so

that infI⊂∂Λ

∫
I κ∂Λ = infJ⊂∂Ω

∫
J κ∂Ω, but OTM(Ω,Λ) is not a C1 diffeomorphism up

to the boundary.
The strength of Theorem 2 lies in the fact that it does not assume any nice behavior

of the optimal map near the boundary. At the same time it shows not only lack of
regularity, but discontinuity. In the proof of Theorem 2, the convexity is used to show
a continuous OTM from Ω to Λ is necessarily a C1-diffeomorphism, by Caffarelli’s
regularity theorem. If we are concerned only with the nonexistence of OTMs which
are C1 diffeomorphisms up to the boundary, one can do away with the convexity
assumption, which is the content of Theorem 3.

The proof of Theorem 3 contains two differences from the proof of Theorem 2. First,
the technical Lemma 4 is no longer necessary, since we are assuming regularity up to
the boundary. On the other hand, condition (2) is weaker than (1), and so one must
make use of cyclical monotonicity and not just of monotonicity.

Proof of Theorem 2. Assume for the sake of contradiction that the OTM

T1 : Ω→ Λ
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Figure 1. α = T1(β) is “close” to ∂Λ and β is convex.

is continuous everywhere on Ω. Since Ω is convex, we have from Caffarelli’s regularity
theorem [9, Theorem 12.50] that the map T2 (the optimal map from Λ to Ω) is C2

everywhere on Λ. We also know that for µ-almost all x and for ν-almost all y, T2 ◦
T1(x) = x and T1◦T2(y) = y [8, Theorem 2.12]. Since both compositions are continuous
and are equal to the identity almost everywhere, it follows that they must be the
identity everywhere, and therefore, that T−1

2 = T1 everywhere. Moreover, since T2 is
C2 by Caffarelli’s regularity theorem, and since its Jacobian matrix is nonsingular at
every point in Λ by the Monge-Ampère equation, it follows from the inverse function
theorem that T1 is also C2. Hence T2 is a C2-diffeomorphism between Λ and Ω.

For sufficiently small ε > 0, consider the sets (see Figure 1)

Λε = {x ∈ Λ : dist(x, ∂Λ) < ε}, Γε = {x ∈ Λ : dist(x, ∂Λ) = ε}.
From Proposition 8, we know that there exists ε̂ > 0 such that for every 0 < ε ≤ ε̂,
the curve Γε is C1. Furthermore, there exists a diffeomorphism fε : ∂Λ → Γε such
that the vector fε(x)− x is normal to ∂Λ at x and to Γε at fε(x), and has magnitude
|fε(x)− x| = ε. Consider the image T2(Γε) = Θε.

Since T2 is C2 and Γε is compact, we have that Θε ⊂ Ω is also a compact, closed C1

curve, so that in particular, dist(∂Ω,Θε) > δ > 0. In order to be able to work in the
interior of Ω, we would like to construct a C2 convex curve β ⊂ Ω such that the interior
of the region enclosed by β completely contains Θε. Note that here, and elsewhere, we
use the standard terminology of calling a closed curve convex if it is the boundary of a
bounded convex set. Such a β can readily be constructed: we pick a point x0 contained
in the interior of the region bounded by Θε and scale points on ∂Ω with respect to x0 by
a factor 1− ε̃ < t < 1 for a small enough ε̃ > 0. Denote the resulting curve by βt. Then,
βt is seen to be convex and C2, since ∂Ω is convex and C2 (in fact we have assumed
that it is C3). Further, we can always arrange dist(∂Ω, βt) <

δ
2 by picking ε̃ > 0 small

enough. In particular, we can choose t so that β = βt contains Θε completely in its
interior, and is as close to ∂Ω as desired. Note that the convexity of β implies that the
signed curvature κβ of β with respect to the inward unit normal field is non-negative.

Next, consider the C2 curve α = T1(β). We claim that α contains Γε in its interior in
the sense that every continuous path between Γε and ∂Λ must intersect α. Indeed, let
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c : [0, 1] → Λ̄ (note that we may assume without loss of generality that c([0, 1)) ⊂ Λ)
be a continuous map such that c(0) ∈ Γε and c(1) ∈ ∂Λ. Then, T2(c(0)) ∈ Θε, while

∩t∈(0,1)T2(c(t, 1)) 6= ∅ by the finite intersection property applied to the compact space Ω.

We claim that ∩t∈(0,1)T2(c(t, 1)) ⊂ ∂Ω. Indeed, suppose that ∩t∈(0,1)T2(c(t, 1)) * ∂Ω.

Since the intersection is nonempty and contained in Ω, we must have some point q ∈ Ω
such that q ∈ ∩t∈(0,1)T2(c(t, 1)). Consider the point p = T1(q). Since p ∈ Λ, we can (by
the continuity of c) find some t′ ∈ (0, 1) sufficiently close to 1 such that p /∈ c[t′, 1]. Since

T2 is an open map on Λ by hypothesis, it follows that q = T2(p) /∈ T2(c(t′, 1)), which

gives us a contradiction. Once we have that ∩t∈(0,1)T2(c(t, 1)) ⊂ ∂Ω,we can prove that
T2(c) intersects β, and hence, that c intersects α. For this, it clearly suffices to show
that there exists some t0 ∈ (0, 1) such that for all t ∈ (t0, 1) one has dist(T2(c(t)), ∂Ω) <
dist(β, ∂Ω). Suppose such a t0 does not exist. Then, there exists a sequence tn ↑ 1 such
that pn = T2(c(tn)) sits inside the closure of the domain bounded by β (we will denote
this domain by dom(β)). By compactness of dom(β), we can assume after possibly
passing to a subsequence that pn → p in dom(β). But then, we have that p ∈ Ω, and

p ∈ ∩t∈(0,1)T2(c(t, 1)), which is a contradiction. Note that since connected components
are preserved under homeomorphisms, Γε is a Jordan curve, and α contains at least
one point in Γε, we have also showed that α ⊂ Γε.

We will need the following lemma.

Lemma 4. Let κα be the signed curvature of α with respect to the inward pointing unit
normal vector field. Then for sufficiently small ε there exists some connected subset
I1 ⊂ α for which the total signed curvature is less than −π, i.e.,

∫
I1
κα < −π.

The lemma says that a closed curve “close” to the boundary of our domain must
exhibit similar curvature behaviour. We will prove this after we show how it implies
the curvature condition.

Using Lemma 4, we can pick a connected I1 ⊂ α such that
∫
I1
κα < −π. Let |I1| = l >

0 be the length of I1. We denote a unit speed parametrization for I1 by α1 : [0, l]→ I1.
Since T2 is an optimal map from ν to µ, we have from monotonicity [8, Proposition
2.24] that for any two points x, y ∈ α, 〈x − y, T2(x) − T2(y)〉 ≥ 0. In particular, for
every t ∈ [0, l) and for a suitably small h > 0, we must have that

〈α1(t+ h)− α1(t), T2(α1(t+ h))− T2(α1(t))〉 ≥ 0.

Dividing by h2 and letting h→ 0 in the previous equation, we get that

(3) 〈α̇1(t), β̇1(t)〉 ≥ 0

where β1 = T2 ◦ α1 is a parametrization of T2(I1). Note β̇1(t) 6= 0 as T2 is locally a
diffeomorphism around every α1(t) ∈ Λ.

Equation (3) implies that the tangent vectors to α and β at any x ∈ α and T2(x) ∈ β
must have a non-negative inner product. We show that this cannot happen, thereby
proving Theorem 2 (modulo the proof of Lemma 4). Intuitively, it is clear that this can-
not happen: as we move along I1 counterclockwise, the tangent vector at a point along
I1 rotates clockwise, while the tangent vector at the corresponding point on β rotates
counterclockwise. Monotonicity dictates that the angle between the corresponding vec-
tors must always be within π

2 . However, since the curvature of I1 is less than −π, and
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the curvature of the corresponding connected subset of β is ≥ 0 by convexity, the angle
between corresponding tangent vectors changes by more than −π when traversing I1,
and therefore, cannot lie in [−π

2 ,
π
2 ] at all points of I1.

To make the above discussion more precise, consider the “tail-to-tail” angle between
two vectors. This is the standard notion of angle which takes values in the interval
(−π, π]. Given an ordered pair of vectors, we define the angle between them as the
signed “tail-to-tail angle” between them, with the sign taken to be positive if we move
counterclockwise from the first vector to the second and negative otherwise. We now
define f : [0, l] → (−π, π], where f(t) is the angle from β̇1(t) to α̇1(t). From (3) it
follows that f(t) ∈ [−π

2 ,
π
2 ] for every t ∈ [0, l]. Set Jt = α1([0, t]) ⊂ I1. Then

(4) f(t)− f(0) =

∫
Jt

κα −
∫
T2(Jt)

κβ + 2k(t)π

where k(t) ∈ Z.

Since α and β are C2, the unsigned angle between α̇1(t) and β̇1(t) defined from [0, l]
to [0,∞) varies continuously. Therefore, any discontinuities in the signed angle f(t)
can occur only near the values −π and π. But since f(t) ∈ [−π

2 ,
π
2 ], it is never close to

π or −π and therefore must be continuous everywhere on [0, l]. Hence 2k(t)π must also
be continuous. But k(t) is integer-valued, so it is the constant k(0) = 0. In particular
(4) yields

(5) f(t) =

∫
Jt

κα −
∫
T2(Jt)

κβ + f(0).

Setting t = l in (5), we get

f(l)− f(0) =

∫
Jl

κα −
∫
T2(Jl)

κβ =

∫
I1

κα −
∫
T2(I1)

κβ < −π + 0 = −π,

where the inequality holds since
∫
I1
κα(x)dx < −π and

∫
J κβ(x)dx ≥ 0 for every J ⊂ β

as β is the boundary of a convex set. On the other hand f(t) − f(0) ∈ [−π, π] since
f(t) ∈ [−π

2 ,
π
2 ] for all t ∈ [0, l]. This contradicts f(l)−f(0) < −π. Hence our assumption

that T1 is continuous must be incorrect, and T1 is discontinuous as desired. �

Proof of Lemma 4. Recall Γε = {x ∈ Λ : dist(x, ∂Λ) = ε}, and α contains Γε in its
interior in the sense that every continuous path between Γε and ∂Λ must intersect α.
Also recall that by assumption,

∫
I κ∂Λ < −π for some connected subset I ⊂ ∂Λ. The

underlying idea is to choose a connected subset of α which is close to the connected
subset I of ∂Λ, and then show that this subset must necessarily contain a further
connected subset of signed curvature less than −π. We have illustrated the arguments
made below in Figure 2.

Let A and B be the endpoints of I. Let ε > 0. Then pick C ∈ I close to A so that
the angle between AC and the tangent to ∂Λ at A is less than ε

2 . Similarly pick some
D ∈ I close to B which satisfies the same criterion. For ε > 0 small, consider the curve
Γε. Recall fε : Γ → Γε maps points on Γ to points ε away on Γε. Now A2 = fε(A),
B2 = fε(B), C2 = fε(C) and D2 = fε(D) are points on Γε. By selecting ε > 0 small
enough, we can ensure that for any X ∈ AA2 and any Y ∈ CC2 , the angle between
AA2 and XY belongs to the interval (π2 − ε,

π
2 + ε) , and also that for any X1 ∈ BB2
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Figure 2. The curve A1B1 ⊂ α enclosed by the region of negative curvature.

and Y1 ∈ DD2, the angle between BB2 and X1Y1 belongs to the interval (π2 − ε,
π
2 + ε).

This is equivalent to saying that the direction of XY differs by no more than ε from
the direction of ∂Λ at the point A , and the direction of X1Y1 differs by no more than
ε from the direction of ∂Λ at the point B .

Next, from Proposition 10, we have that there exists a connected subset Ĩ ⊂ α which
is contained in the region bounded by I, AA2, BB2 and Γε , and which has endpoints
A1 ∈ AA2 and B1 ∈ BB2. We move along Ĩ from A1 to B1 and denote by C1 the point
where Ĩ intersects CC2 for the first time. We denote by D1 the point where Ĩ intersects
DD2 for the last time. From Proposition 9, we further know that there exists a point
E1 lying on the portion of Ĩ between A1 and C1 at which the direction of the tangent
to Ĩ coincides with the direction of A1C1. In particular, the angle between the tangent
to Ĩ at E1 and the segment AA2 is in the interval (π2 − ε,

π
2 + ε). Similarly, we can

choose a point F1 that lies on the portion of Ĩ connecting D1 to B1 such that the angle
between the tangent to Ĩ at F1 and BB2 is in the interval (π2 − ε,

π
2 + ε).

Finally, we are in a position to establish the existence of the interval I1 ⊂ Ĩ for which∫
I1
κα < −π with respect to the unit normal pointing inside the bounded component

of the complement of the Jordan curve α. Equivalently, it is the signed curvature with
respect to the standard orientation on R2 and with I1 oriented from B1 to A1. We
will always use this sign of curvature for (connected components) of Ĩ. Denote by δA
the angle between the tangent to Ĩ at the point A1 and the vector A1A and by δB,
the angle between the vector B1B2 and the tangent to Ĩ. In this definition, we have
used the tangent vector to Ĩ when it is oriented from A1 to B1. Note that both δA
and δB are in [0, π]. We now apply the Gauss-Bonnet theorem to the region (with its

boundary oriented counterclockwise) bounded by I , Ĩ , AA1 and BB1 to get that

(6)

∫
I
κ∂Λ +

π

2
+ (π − δA)−

∫
Ĩ
κα + (π − δB) +

π

2
= 2π.



8 O. CHODOSH, V. JAIN, M. LINDSEY, L. PANCHEV, AND Y. A. RUBINSTEIN

Note the negative sign in front of the integral over Ĩ, which comes from the fact that
the orientation of Ĩ in this calculation is from A1 to B1, which is the opposite of what
we had originally used (i.e. from B1 to A1) in computing

∫
Ĩ κα. Simplifying (6), we

have
∫
Ĩ κα =

∫
I κ∂Λ + π − δB − δA We will now split Ĩ into three parts and show that

some connected combination of these three parts has a total signed curvature lesser
than −π with the original orientation i.e. with Ĩ going from B1 to A1. Note that the
points E1 and F1 provide such a splitting naturally. Denote these three components of
Ĩ between A1 and E1, E1 and F1, and F1 and B1 by Ĩ1, Ĩ2, Ĩ3 respectively. For some
ε̂1, ε̂3 ∈ (−ε, ε), ∫

Ĩ1

κα =
(π

2
+ ε̂1

)
− δA + 2kπ

for some integer k, and∫
Ĩ3

κα = (π − δB)−
(π

2
− ε̂3

)
+ 2k′π =

π

2
− δB + 2k′π + ε̂3

for some integer k′.
If k < 0, then ∫

Ĩ1

κα < −
3π

2
+ ε.

Taking ε small enough, we get ∫
Ĩ1

κα < −π

in which case Ĩ1 is the desired segment.
If k > 0, then ∫

Ĩ\Ĩ1
κα =

∫
I
κ∂Λ + π − δB − δA −

∫
Ĩ1

κα

< −π + π − δB − δA −
π

2
+ δA − 2π + ε

= −δB −
5

2
π + ε < −π,

as long as we take ε > 0 sufficiently small. Hence, in this case we have that Ĩ\Ĩ1 = Ĩ2∪Ĩ3

has total curvature less than −π.
Similarly, if k′ 6= 0, then using one of the arguments above, we can take I1 to be

either Ĩ3 or Ĩ1 ∪ Ĩ2.
Thus, the only case left to investigate is when k = k′ = 0. In this case,∫

Ĩ1

κα =
π

2
− δA + ε̂1 and

∫
Ĩ3

κα =
π

2
− δB + ε̂3.
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Combining these two equations, we get that∫
Ĩ2

κα =

∫
Ĩ
κα −

∫
Ĩ1

κα −
∫
Ĩ3

κα

=

∫
I
κ∂Λ + π − δB − δA −

π

2
+ δA −

π

2
+ δB − ε̂1 − ε̂3

<

∫
I
κ∂Λ + 2ε.

In particular, if we choose ε < −
∫
I κ∂Λ+π

2 , then, it follows that
∫
Ĩ2
κα ≤

∫
I κ∂Λ+2ε < −π

and thus in this case, Ĩ2 satisfies the claim. This completes the proof of the lemma. �

Proof of Theorem 3. Assume the existence of such T1. We follow the notation estab-
lished in the proof of Theorem 2. Pick J ⊂ ∂Λ so that

∫
J κ∂Λ ≤ infI⊂∂Ω

∫
I κ∂Ω−π. We

can choose such a J ⊂ ∂Λ because by assumption, infJ⊂∂Λ

∫
J κ∂Λ ≤ infI⊂∂Ω

∫
I κ∂Ω−π,

and the infimum on the left hand side is attained because ∂Λ is compact. Let γ :
[0, l] → J be the unit speed parametrization of J , so that γ′′(t) = κ∂Λ(γ(t))n∂Λ(γ(t))
where n∂Λ(γ(t)) is the inward pointing unit normal at γ(t) and l is the length of J .
From monotonicity (recall (3)), f(t) ∈ [−π

2 ,
π
2 ] for all 0 ≤ t ≤ l. But we also have that

for every t ∈ [0, l],

f(t)− f(0) =

∫
γ([0,t])

κ∂Λ −
∫
T−1

1 (γ([0,t]))
κ∂Ω + 2k(t)π

where as before k(t) is an integer that accounts for the discontinuity that amounts from
restricting the codomain of f to (−π, π]. Since f(t) ∈ [−π

2 ,
π
2 ], k = 0. Thus∫

γ([0,t])
κ∂Λ −

∫
T−1

1 (γ([0,t]))
κ∂Ω = f(t)− f(0).

On the other hand, from the choice of J ⊂ ∂Λ, we have that∫
T−1

1 (γ([0,l]))
κ∂Ω −

∫
γ([0,l])

κ∂Λ =

∫
T−1

1 (J)
κ∂Ω −

∫
J
κ∂Λ ≥ inf

I⊂∂Ω

∫
I
κ∂Ω −

∫
J
κ∂Λ ≥ π.

To conclude the proof, we claim that f(t) ∈ (−π
2 ,

π
2 ). To see this, observe that for

any x, y, z ∈ Λ

〈x, T2(x)− T2(y)〉+ 〈y, T2(y)− T2(z)〉+ 〈z, T2(z)− T2(x)〉 ≥ 0,

by cyclical monotonicity, or equivalently

〈z − y, T2(z)− T2(y)〉 ≥ 〈x− z, T2(y)− T2(x)〉.
Now by Brenier’s theorem T2 = ∇w for some convex function w on Λ which is C2 by
our assumptions, and since det∇2w = 1 this function is strongly convex in the sense
that ∇2w > 0. Since T2 is C1 we have T2(y)− T2(x) = DT2(x) · (y − x) + v(y), where
|v(y)| = o(|x− y|). Thus,

〈z − y, T2(z)− T2(y)〉 ≥ 〈x− z,∇2w(x) · (y − x) + v(y)〉.

Now pick a closed disk that is contained in Λ s.t. the circle bounding the disk is
tangent to ∂Λ at x. Let γ̃ be a unit speed parametrization of this circle. In particular,
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for some fixed t2 we have that γ̃(t2) = x. Set y = γ̃(t1) and z = γ̃(t3) and such that
|y − x| = |z − x| or equivalently 2t2 = t1 + t3. Also, set δ(t) := T2 ◦ γ̃(t). Then,

〈γ̃(t3)− γ̃(t1), δ(t3)− δ(t1)〉 ≥ 〈x− z,∇2w(x) · (y − x) + v(y)〉.
Note that for sufficiently small t3−t1, there exists a constant C > 0 such that 1

C |z−y| <
t3 − t1 < C|z − y| and |x − y| ≤ |z − y| ≤ 2|x − y|. Thus dividing both sides of the
equation by (t3 − t1)2 and taking the limit as t3 − t1 tends to zero gives

〈 ˙̃γ(t2), δ̇(t2)〉 ≥ C ′∇2w〈ν, ν〉 > 0,

as |ν| = 1 is the tangent vector to the disk at x and C ′ > 0. This completes the proof
of the theorem. �

2.1. Examples. In this section we will explore several concrete examples. The first
one shows that the extended curvature criterion for the non-existence of OTMs which
are diffeomorphisms up to the boundary is sufficient but not necessary. The second
example shows that it is reasonable not to hope for a constant better than −π in the
curvature criterion.

Example 5. Consider the two domains pictured in Figure 3 and suppose there exists
an optimal map T : Ω → Λ, which is a C1-diffeomorphism. Given ε > 0 small, we
construct our domains so that −2π ≤ infI⊂∂Ω

∫
I κ∂Ω = infJ⊂∂Λ

∫
J κ∂Λ < −2π + ε. In

particular, the hypotheses of Theorem 3 (and, of course, those of Theorem 2, since Ω
is not convex) do not apply here.

Note that ∂Λ has 4 disjoint connected subsets {J1, . . . , J4} of signed curvature−2π+ε̃
for some 0 < ε̃ < ε, while ∂Ω has only one negatively curved component, with signed
curvature no lesser than −2π. In particular, the integral of κ∂Ω over any union of
connected subsets of ∂Ω cannot be lesser than −2π.

As before, we show that an OTM T (as above) cannot exist, by showing that it
violates the monotonicity condition for OTMs. Indeed, by the “tail-to-tail” argument
used in the proof of Theorem 2, we have that

−π ≤
∫
Ji

κ∂Λ −
∫
T (Ji)

κ∂Ω < −2π + ε̃−
∫
T (Ji)

κ∂Ω

so that ∫
T (Ji)

κ∂Ω < −π + ε̃ < −π + ε

Note that the images T (Ji) are disjoint. Therefore, from the above discussion, we
have

−2π ≤
∫
∪T (Ji)

κ∂Ω =

4∑
i=1

∫
T (Ji)

κ∂Ω < −4π + 4ε < −2π

for ε small enough, which is a contradiction. This completes the proof of the non-
optimality of T .

Example 6. Let Ω = {(x, y) ∈ R2|x > 0, 1 < x2 + y2 < 2} be a half annulus and
Λ = {(x, y) ∈ R2|x > 0, x2 + y2 < 1} be the unit half disk. We equip them with the
restricted Lebesgue measure. Note that this equips both Ω and Λ with probability
measures. Further note that Λ is convex, while Ω has a segment of curvature (the inner
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Figure 3. Both domains have boundary segments that are equally neg-
atively curved, but the OTM is not a smooth diffeomorphism up to the
boundary.

half circle) −π. Also observe that both boundaries are piecewise smooth. We will show
that the OTM T : Ω→ Λ is continuous on the interior of Ω.

Indeed we expect the map to preserve the points radially and to “contract” the half
annulus to the half disk by preserving the area. Such a map would take the form

T (x, y) =

(
x

√
1− 1

x2 + y2
, y

√
1− 1

x2 + y2

)
.

It is immediate to see T is a diffeomorphism between Ω and Λ with detDT = 1, so
that T is area preserving. Further, T = Oϕ where ϕ : Ω → R is the smooth convex
function given by

ϕ(x, y) =

√
x2 + y2

√
x2 + y2 − 1− log

(√
x2 + y2 +

√
x2 + y2 − 1

)
2

.

But now T is the gradient of a convex function, and is also area preserving. By Brenier’s
theorem [8, Theorem 2.12], it is the unique OTM between Ω and Λ.

3. The squareman

One of the characteristics of the subject of optimal transport is that despite many
deep results on existence and regularity of OTMs, it is still very hard to explicitly
compute the OTM in almost any non-trivial example. Caffarelli gave an example of a
discontinuous OTM to show that without convexity of the target his regularity theory
could break down [1] (see also [9, Theorem 12.3]). He showed that the OTM between
a disk and two half disks connected via a sufficiently thin bridge is discontinuous.
However, it is not exactly clear how “thin” the bridge should be and where and how
the discontinuity arises. In this section we will consider an example very close to
Caffarelli’s example, and hopefully provide the reader with some intuition of what
the map looks like. In particular, we will discuss where and how the discontinuity
arises in this example, and make some qualitative statements about the extent of this



12 O. CHODOSH, V. JAIN, M. LINDSEY, L. PANCHEV, AND Y. A. RUBINSTEIN

discontinuity. Our computation relies on results due to Caffarelli and Figalli and we
begin by recalling some of these results.

Recall that if µ and ν are two probability measures (not necessarily uniform) sup-
ported on Ω and Λ respectively, then we denote by T1 the optimal map which transports
µ to ν. Similarly, T2 is the optimal map that transports ν to µ. In our setting, where
µ, ν are sufficiently regular measures supported on domains in R2 and the transporta-
tion cost is the quadratic cost, we have that T2 = ∇φ for some convex function φ on Λ
and T1 = ∇φ∗ on Ω, where φ∗ is the Legendre transform of φ [8, Theorem 2.12]. Let
γ be the optimal transportation plan between µ and ν i.e. γ = (Id × T1)#µ. We will
need the following short lemma:

Lemma 7. Assume that µ and ν are uniform measures supported on Ω̃ and Λ̃ respec-
tively, where Ω̃ and Λ̃ are bounded, connected, simply connected, open domains in R2.
Let Ω̃ be convex. Then the OTM from Λ̃ to Ω̃, denoted by T , is smooth. Further, T is
a diffeomorphism between Λ̃ and an open set Ω̃′ ⊂ Ω̃ of full measure.

Proof. Since Ω̃ is convex, Caffarelli’s regularity theory is applicable. Hence T is smooth

on Λ̃. By the Monge–Ampère equation, det(DT ) = |Ω̃|
|Λ̃| = c for some c > 0 almost

everywhere on Λ̃. Since T is smooth, it follows that det(DT ) = c > 0 everywhere.
In particular, by the inverse function theorem T is a local diffeomorphism at every
point of Λ̃. To show that T is a global diffeomorphism between Λ̃ and T (Λ̃), we only
need to show that T is injective. This follows, for instance, from Caffarelli’s result on
strict convexity of solutions to the Monge–Ampère equation above, but we also give an
elementary argument.

Indeed, assume on the contrary that there exist x, y ∈ Λ̃ such that T (x) = T (y) = z.
Pick ε > 0 such that Bε(x) ∩ Bε(y) = ∅ and T is a diffeomorphism when restricted
separately to both Bε(x) and Bε(y). Let A = T (Bε(x)) ∩ T (Bε(y)). Since A is non-
empty and open, it must have positive measure. But then, for every a ∈ A the set
{b ∈ Λ̃ : (a, b) ∈ supp(γ)} contains at least two elements - one from Bε(x) and one from
Bε(y), where γ is the optimal transportation plan between µ and ν. This means that γ
is not a Monge map since it sends every element in A to at least two locations, which
contradicts Brenier’s theorem. It follows that T is a global diffeomorphism between Λ̃
and T (Λ̃) = Ω̃′.

Note that Ω̃′ ⊂ Ω̃. Since T is optimal, |Ω̃′| = |T (Λ̃)| = |Λ̃| = |Ω̃| and therefore, Ω̃′ is
a set of full measure. This completes the proof of the lemma. �

Finally, in our example below, we will need two additional properties, which we state
now:

Property A: Restrictions of optimal maps are still optimal between the restricted do-
main and its image. [9, Theorem 4.6]

Property B: If the optimal map between Ω and Λ is of the form Oφ, then the set
{x ∈ R2|∂φ(x) ∩ Λ contains a segment} is empty. [4, Proposition 3.2]

3.1. Explicit Example. We now introduce a specific example we refer to as the
squareman. Let µ be the uniform probability measure on a rectangle Ω with sides
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Figure 4. The squareman example. The optimal map T1 pictured will
be seen to be discontinous.

|A1B1| = a and |G1A1| = b, and ν be the uniform probability measure on Λ, which
is made up of two rectangles - a rectangle Λ2 with sides |AB| = a and |GA| = b, and
another rectangle Λ1 on top of it with sides |CD| = c and |ED| = d, where d < a (see
Figure 4). Note that since the optimal map is invariant under translations of Ω and Λ,
it does not depend on the relative positions of the domains with respect to each other.
Our example is similar to the one by Caffarelli: indeed, if we work with rectangles
instead of disks, then the example by Caffarelli transforms to transporting a rectangle
to an H-shape figure. Due to symmetry, we can divide these figures into 4 different
symmetric parts and look at the OTM for each one. But this is exactly the example
we are considering.

Since Ω is convex, it follows from Lemma 7 that the map T2 is a diffeomorphism onto
its image, which is a set of full measure in Ω. Further, by Proposition 11, it follows
that there exists a continuous extension of T2 from Λ to Ω. However, since Λ is not
convex, we cannot make any such claims about T1. In fact, we will show below that T1

is discontinuous, and further, give a qualitative statement of how discontinuous it is.
Note that since ∂Λ does not contain any connected subset with total signed curvature
less than −π/2, this shows that the condition in Theorem 2 is not necessary.

Note that Brenier’s theorem and Caffarelli’s regularity theory are applicable only to
the interiors of Ω and Λ. However, in this particular example, we will take advantage of
the fact that the boundaries of the two domains are parts of straight segments. Using
this, we will be able to identify where parts of the boundary ∂Λ are mapped by T2,
which will give us useful information about the discontinuity of the map T1 = ∇φ∗.
Indeed, if we knew that two points x1 ∈ EF and x2 ∈ GF are mapped to an interior
point x ∈ Ω, and since T2 is continuous, then ∂φ∗(x) would contain both x1 and x2,
and in particular, the extent of discontinuity of T1 at x would be at least the distance
between x1 and x2.

In the following four steps we will determine how the map T2 behaves on the bound-
ary of Λ and this will also give us information about the behaviour of T1. In particular,
we will justify Figure 5, in which same-colored segments are mapped to same-colored
segments. The 4 steps are as follows:

Step 1: T2(AB) = A1B1 and T2(BD) = B1D1 and both restrictions are homeomor-
phisms. Furthermore, T2(AG) ⊂ A1G1 and T2(DE) ⊂ D1G1.
Step 2: We have that either T2(G) = G1 or T2(E) = G1. In particular, we can assume
without any loss of generality that T2(G) = G1, so T2(AG) = A1G1 homeomorphically.
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Figure 5. How the OTM behaves on the boundary of the domains.

We will further show that T2(EF ) lies completely in Ω except for, of course, T2(E) = E1

which is on the boundary.
Step 3: For some E′ ⊂ GF we have that T2(GE′) = G1E1 homeomorphically.
Step 4: T2(E′F ) = T2(EF ).

Step 1: T2(AB) = A1B1 and T2(BD) = B1D1 and both restrictions are homeomor-
phisms. Furthermore, T2(AG) ⊂ A1G1 and T2(DE) ⊂ D1G1.

To get the desired information on ∂Λ, we are going to use what will henceforth be
referred to as the reflection principle. More precisely, we reflect Λ with respect to AB
to get a domain of twice the area, RAB(Λ) and reflect Ω with repect to A1B1 to get a
domain RA1B1(Ω). See Figure 6.

Let µ′ and ν ′ be uniform probability measures on RA1B1(Ω) and RAB(Λ) respectively
with respective uniform densities f ′ and g′. As before, since RA1B1(Ω) is convex,
it follows from Caffarelli’s regularity theory that the (ν-almost everywhere) unique,
optimal map T ′2 from RAB(Λ) to RA1B1(Ω) is smooth. We claim T ′2(Λ) ⊂ Ω.

For simplicity let AB and A1B1 lie on the x-axis and for any z ∈ R2 let z denote
its reflection with respect to the x-axis. Due to symmetry, the map T (x) = T ′2(x)

has the same cost as T ′2 and by the uniqueness of the OTM, we get T ′2(x) = T ′2(x)
for a.e. x. But now if T ′2(x) = y and x and y are on different sides of the x-axis, we
know T ′2(x) = y. It is immediately checked that this violates the cyclic monotonicity
condition for x and x. In particular for almost all x ∈ Λ we get that T ′2(x) ∈ Ω and
since T ′2 is smooth we conclude that T ′2(Λ) ⊂ Ω. Also note T ′2(AB) ⊂ A1B1 since
otherwise by the continuity of T ′2 we could find a ball around a point on AB whose
image under T ′2 lies completely above or below the x-axis, which as we explained above
violates cyclic monotonicity. Note that there are two key conditions in the use of the
reflection principle. First we need to reflect along a straight segment. Second we need
one of the domains after reflection to be convex.

From here, since optimality is inherited by restriction (Property A), and since Bre-
nier’s theorem also guarantees almost-everywhere uniqueness of the optimal map, T ′2|Λ
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Figure 6. The reflection principle: We reflect both domains as to make
the boundary part of the interior and use the optimal map is preserved
under restriction.

coincides with T2 almost everywhere. Since T ′2 is smooth, this gives us a smooth ex-
tension of T2 to the interior of the segment AB and T2(AB) ⊂ A1B1. Note that
Proposition 11 already gives us a continuous extension of T2 to the entire boundary
∂Λ. However, by using the reflection principle here, we have a smooth extension of T2

to the interior of the segment AB, and more importantly, we get information about
the image of this extension on the interior of the segment AB. Similarly, we get an
extension of T2 to the interior of BD and T2(BD) ⊂ B1D1. We will use the same
notation for T2 and its continuous extensions to (parts of) ∂Λ.

Further, observe we can also use the reflection principle again and reflect RAB(Λ)
with respect to the line containing BD to get R′BD(Λ) and reflect RA1B1(Ω) with respect
to the line containing B1D1 to get R′B1D1

(Ω). Now the newly obtained domains are

4 times the size of the original ones and R′B1D1
(Ω) is still convex. The motivation for

doing so is to include the points B and B1 in the interiors of the domains R′BD(Λ)
and R′B1D1

(Ω) respectively. Exactly as above due to symmetry and smoothness of
the optimal map, it follows that the optimal map must send B to B1. Therefore using
Lemma 7 we have that T2 maps the half-open segment BA (with B included) injectively
to a (possibly strict) subset of B1A1 (with B mapping to B1)

Similarly, we can reflect RAB(Λ) with respect to the line containing AG to get
R′′AG(Λ) and reflect RA1B1(Ω) with respect to the line containing A1G1 to get R′′A1G1

(Ω).
Using exactly the same arguments as in the preceding paragraph, it follows that T2

extends to a continuous, injective map on the entire closed segment AB, T2(A) =
A1, T2(B) = B1 and T2(AB) ⊂ A1B1. In fact, since T2(A) = A1 and T2(B) = B1, we
have that T2(AB) = A1B1 so that T2 is a homeomorphism between the closed segments
AB and A1B1.

Note that symmetry considerations in the optimal map from R′′AG(Λ) to R′′A1G1
(Ω)

lead to the conclusion that the interior of the segment AG must be mapped to a part of
the interior of the segment A1G1. Since we cannot perform any reflection of the form
considered earlier to include G in the interior of the reflected domain, we cannot claim
that T2 can be extended to a continuous map till G and, in particular, that T2(G) = G1.
In fact, as we will end up showing T2(G) might be distinct from G1.
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It is clear now, using exactly the same arguments as above, that T2(D) = D1 and in
fact, that T2 is a homeomorphism between the closed segments BD and B1D1. Simi-
larly, it also follows that T2 extends smoothly to the interior of the segment DE and
sends it to part of the interior of the segment D1G1.

Step 2: We have that either T2(G) = G1 or T2(E) = G1.

After proving Step 2, we may thus assume (without loss of generality) that T2(G) =
G1, so T2(AG) = A1G1 homeomorphically. We will further show that T2(EF ) lies
completely in Ω except for, of course, T2(E) = E1 which is on the boundary.

To check the above first note that T2(Λ) ⊂ Ω is of full measure and is compact,
so it must be that T2(Λ) = Ω. Furthermore we know T2(Λ) ⊂ Ω, so it must be that
∂Ω ⊂ T2(∂Λ). Since in Step 1 we determined where ∂Λ is mapped except for the
segments GF and EF we must have that

(7) G1 ∈ T2(GF ) or G1 ∈ T2(EF ).

Now we will study T2(EF ). Set α = T2(EF ∪ FC). Note α is a continuous curve
from E1 to T2(C) = C1. Then α ∪ C1D1 ∪ D1E1 is a continuous loop. Note it is
simple since if a point x is an intersection point, then ∂φ∗(x) would contain a segment
in Λ1 ⊂ Λ, which contradicts (Property B). Hence by the Jordan curve theorem the
loop bounds some open set Ω1 ⊂ Ω, and we will refer to this loop as ∂Ω1. Note that
neither T2(Λ2) nor T2(Λ1) can intersect ∂Ω1 ∩Ω (Property B). Also, both T2(Λ2) and
T2(Λ1) are path connected, since Λ1 and Λ2 are path connected and T2 is continuous.
In particular, T2(Λ1) is either completely contained inside Ω1 or completely contained
inside Ω\Ω1, and a similar statement also holds for T2(Λ2). Finally, note that by Step 1,
the intersection of a ball of sufficiently small radius centered at D1 with Ω is contained
inside Ω1.

We claim that T2(Λ1) ⊂ Ω1. Indeed, suppose this is not so. Then, we must have
T2(Λ1) is contained in Ω\Ω1 as noted above. We will show that this leads to a contra-
diction. To see this, choose a continuous path γ in Λ1 with one endpoint at D. Since
T2(D) = D1, and the intersection of a sufficiently small ball centered at D1 with Ω
is contained inside Ω1, it follows that there exist points in γ which must be mapped
to Ω1 by T2, so that we cannot have T2(Λ1) ⊂ Ω\Ω1. Therefore, T2(Λ1) ⊂ Ω1 and in
fact, T2(Λ1) is of full measure in Ω1 since T2(Λ) ⊂ Ω is of full measure in Ω. Since the
restriction of an optimal map (Property A) is optimal we get that T2|Λ1

: Λ1 → Ω1 is
the optimal map between the two domains.

Now we are in a position to study T2(EF ). Let T2(K) = K1 be the point on T2(EF )
satisfying the following two properties: (a) it lies on G1E1 (b) it has the least distance
to G1 among all the points on EF whose images under T2 lies on G1E1. We will show
that K1 = E1.

Observe first that K1E1 ⊂ T2(EF ). Indeed if this was not the case then for some
M ∈ EK we would have that T2(M) ∈ Ω, but then the pair of points K,M would
violate the cyclical monotonicity condition. Note that even though these points are on
the boundary of Λ, the continuity of T2 allows us to extend the cyclical monotonicity
condition to these points. Hence K1E1 ⊂ T2(EF ).
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Now, we reflect Ω1 with respect to K1D1 and reflect Λ1 with respect to ED. The
reflection of Λ1 is a convex domain, and therefore, we can use the reflection principle
as before, from which we can conclude that T1(K1D1) ⊂ ED. Note here we are using
the fact that Λ1 is convex to be able to define T1 everywhere on Ω1 (Proposition 11).
However, we already knew that T2(ED) = E1D1, so we conclude K1D1 ⊂ E1D1, so
K1 = E1 as desired.

In particular, we get that T2(EF ) ∩ E1G1 = E1. Applying the same argument for
T2(GF ) we conclude that

(8) T2(EF ) ∩ E1G1 = E1 and T2(GF ) ∩G1G1 = G1

where G1 = T2(G). In particular, (7) and (8) imply that T2(E) = E1 = G1 or
T2(G) = G1. Due to symmetry between E and G, we can assume without loss of
generality that T2(G) = G1. Further, if x ∈ T2(EF ) ∩ (∂Ω\G1E1) then since we have
covered ∂Ω\G1E1 by boundary segments of ∂Λ\EF ∪ GF we would get that ∂φ∗(x)
contains a segment in Λ, which contradicts (Property B). Hence T2(EF ) is in Ω except
for T2(E) = E1 ∈ ∂Ω. Note that here we used the fact that the only points of Λ1

that can be mapped to the same point are pairs of points on EF and GF since the
segment connecting them intersects Λ at isolated points and not segments (Property B)

Step 3: For some E′ ⊂ GF we have that T2(GE′) = G1E1 homeomorphically.

As we explained at the beginning of Step 2 we must have that ∂Ω ⊂ T2(∂Λ). The only
part of ∂Λ whose position under T2 we haven’t determined yet is GF . At the same time
we know G1E1 ∩ T2(∂Λ\GF ) = ∅, so we conclude that G1E1 ⊂ T2(GF ). Let E′ ∈ GF
be such that T2(E′) = E1. It is clear now that by Property B, T2(GE′) is simple. Fur-
ther, note that if some M ∈ E′F maps to the G1E1 then the pair M,E′ would violate
the cyclical monotonicity condition. Hence since G1E1 ⊂ T2(GF ) = T2(GE′∪E′F ) we
must have that G1E1 ⊂ T2(GE′). But now T2(GE′) is simple with endpoints G1 and
E1 and it contains G1E1, so it must be that T2(GE′) = G1E1 as desired.

Step 4: T2(E′F ) = T2(EF ).

Set α1 = T2(EF ) and α2 = T2(FC) and note that both are simple curves (Property
B). Following the notation from above we have that α = T2(EF ∪FC) = α1∪α2. Now
α∪C1B1∪B1A1∪A1G1∪G1E1 is a Jordan curve, so it bounds some Ω2. In particular
we have that Ω1 ∪Ω2 ∪ α̊ = Ω where α̊ is the curve without its endpoints. In Step 2 we
showed that T2(Λ1) is of full measure in Ω1. Hence T2(Λ2) ⊂ Ω2 and is of full measure
in Ω2. Therefore T2|Λ2

: Λ2 → Ω2 restricts to an optimal map by Property A. T1|Ω2
is

its inverse, so it is optimal as well.
But now Λ2 is convex, so T1|Ω2

is smooth on Ω2 by Caffarelli’s regularity theory

and extends continuously to the boundary. Now T1|Ω2
(Ω2) ⊂ Λ2 is compact and of

full measure, so T1(Ω2) = Λ2. Since T1(Ω2) ⊂ Λ2 we conclude that ∂Λ2 ⊂ T1(∂Ω2).
We know that T2 sends ∂Λ2\E′F to ∂Ω2\α1 homeomorphically by the previous three
steps. This means T1(∂Ω2\α1) = ∂Λ2\E′F , so we must have that E′F ⊂ T1(α1). But
note T1(α1) is a simple curve (by Property B) that contains E′F and has endpoints E′
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and F . Hence it must be that T1(α1) = E′F homeomorphically, so we conclude that
T2(E′F ) = α1 = T2(EF ) as desired.

Thus we have completely determined T2(∂Λ) and thus we have justified the picture
in Figure 5. Further, we have determined that the set of discontinuity of T1 is exactly
the curve α1 and for every x ∈ α1, the subdifferential ∂φ∗(x) is a segment that connects
the preimages of x on E′F and EF . In particular, as x moves from T1(F ) to E1 this
segment grows and reaches |EE′| as x gets to E1.

Appendix A.

Proposition 8. Assume Λ is a bounded simply connected domain with C2 boundary.
Then there exists an εo > 0 such that for all 0 < ε < εo, Γε = {x ∈ Λ : dist(x, ∂Λ) = ε}
is a C1 simple curve with a diffeomorphism fε : ∂Λ→ Γε such that fε(x)−x is normal
to both curves at the points x and fε(x) and |fε(x)− x| = ε.

Proof. Define v : ∂Λ → S1 to be the inward pointing unit normal vector field. Next
define F : ∂Λ → Λ by F (x) = x+ εv(x). This map is well defined for ε small, so that
Im(F ) ⊂ Λ. In fact we will show F is the desired diffeomorphic map fε.

Note that for any x ∈ ∂Λ there exists εx = sup{ε > 0 : Bε(x+ εv(x)) ∩ ∂Λ = {x}}.
We claim that there exists an εo > 0 such that εx ≥ εo for all x ∈ ∂Λ. Indeed, this is
true because ∂Λ is assumed to be C2, so that its radius of curvature is a continuous,
strictly positive function on ∂Λ, which is assumed to be compact. By taking εo to be
smaller than the positive lower bound for the radius of curvature, the proof of the claim
is complete. Therefore, for 0 < ε < εo, we get ε = |F (x)− x| = dist(F (x), ∂Λ), for any
x ∈ ∂Λ, so that in particular Im(F ) ⊂ Γε. Furthermore if y ∈ Γε then there exists
x ∈ ∂Λ with |x− y| = ε, so in particular y = F (x). Hence Im(F ) = Γε. Next note that

F is clearly 1-1 since Bε(F (x)) ∩ ∂Λ = {x} for every x ∈ ∂Λ. Hence F is a bijection.
Finally, note that since ∂Λ is C2 then v is C1 and so F is C1. Hence Im(F ) = Γε is

a C1 curve which is diffeomorphic to ∂Λ. Also by definition x− F (x) is normal to ∂Λ
at x and since dist(x,Γε) = ε = |x− F (x)| we also have that x− F (x) is normal to Γε
at F (x). This completes the proof of the proposition. �

Proposition 9. Assume γ : [0, 1] → R2 is a C2 simple (non-closed), regular curve.
Then there exists t ∈ (0, 1) such that γ′(t) is parallel to γ(1)− γ(0).

Proof. Let γ(s) = (γ1(s), γ2(s)). By Cauchy’s mean value theorem, there exists some
t ∈ (0, 1) such that (γ1(1)− γ1(0))γ′2(t) = (γ2(1)− γ2(0))γ′1(t). Without loss of gener-
ality, we can assume that γ2(1)− γ2(0) 6= 0. Then, if γ′2(t) = 0, we get that γ′1(t) = 0,
which contradicts the regularity assumption. Dividing by (γ2(1)−γ2(0))γ′2(t), we have
the result. �

Proposition 10. Assume Λ is a bounded simply connected domain with C2 boundary.
Let ε > 0 be such that Γε = {x ∈ Λ : dist(x, ∂Λ) = ε} is a C1 simple curve and
fε : ∂Λ → Γε be a diffeomorphism such that fε(x) − x is normal to both curves at the
points x and fε(x) and |fε(x)− x| = ε (guaranteed to exist by Proposition 8). Now let
γ : [0, 1]→ R2 be a simple C1 closed curve that lies in Λ and contains Γε in its interior
in the sense that every continuous path between Γε and ∂Λ must intersect γ. Also
assume that γ intersects neither ∂Λ nor Γε. Then for all pairs C,D ∈ ∂Λ of distinct
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points, if I ⊂ ∂Λ is the subset of ∂Λ that connects C and D as we move clockwise
around ∂Λ there exists a connected subset of γ that lies completely in the closed figure
ΘCD bounded by the segments [C,C2], [D,D2] and by I and fε(I) such that it has one
endpoint on each of [C,C2] and [D,D2], where C2 = fε(C)and D2 = fε(D).

This proposition is illustrated in Figure 2, where the path between P and Q is the
connected subset of γ which the proposition guarantees.

Proof. We prove this by contradiction. Without loss of generality, we can assume that
γ(0) lies outside ΘCD. Let t1 = inf{t : γ(t) ∈ ΘCD} and t2 = sup{t : γ(t) ∈ ΘCD}. By
the compactness of the unit interval, the continuity of γ, and the closedness of ΘCD,
the infimum and supremum are attained.

Consider S = γ[t1, t2] ∩ ΘCD. Since we are assuming that there does not exist a
connected subset of γ that lies completely in the closed figure ΘCD such that it has one
endpoint on each of [C,C2] and [D,D2], it follows that there are two, mutually exclusive
types of path connected components of S - those that intersect [CC2] and those that
intersect [DD2]. Let A′ denote the union of all the path connected components of S
that intersect [CC2] and B′ denote the union of those that intersect [DD2]. Then, A′

and B′ are disjoint, and we claim that they are also compact subsets of R2.
First, let us see how the compactness of A′ and B′ finishes the proof. Let ∆′CD

denote the complement of ΘCD in the region enclosed between ∂Λ and Γε. Let ∆CD =
∆′CD ∪ [CC2]∪ [DD2]. Note that ∆CD is a closed and bounded, hence compact subset
of R2. Finally, let A = A′ ∪∆CD and B = B′ ∪∆CD. Then, the compactness of A′, B′

implies that A,B are compact and further, for E in the interior of I and E2 = fε(E),
we get that E,E2 are not separated by A or B in the sense that they lie in the same
path connected (and hence, connected) component of R2\A and of R2\B. To see that
E,E2 are not separated by A, we begin by noting that the compactness of A′ implies
that the distance between A′ and [D,D2] is always greater than some ε > 0. Then, we
can go from E,E2 in R2\A by travelling along I towards D until we are at a distance
ε/2 away from D, then moving parallel to [D,D2] until we hit fε(I), and finally, moving
along fε(I) to E2. Here, we use the fact that A′ does not intersect I or fε(I). A similar
argument shows that E,E2 are not separated by B.

Now, we recall Janiszewski’s theorem [3, Ap.3.2], which says that if A,B are compact
subsets of R2 such that A∩B is connected, and E,E2 ∈ R2\A∪B such that neither A
nor B separates E,E2, then A ∪ B also does not separate E,E2. This implies that γ
does not separate E,E2 i.e. E,E2 lie in the same connected component of R2\γ (and
hence, the same path connected component of the open subset R2\γ of R2). But this
contradicts the hypothesis that Γε lies in the interior of γ.

So, to finish the proof, we only need to show that A′, B′ are compact. We do this
only for A′, the proof for B′ being similar. Since A′ is a bounded subset of R2, we
only need to show that it is closed in R2. Let pn be a sequence of points in A′ such
that pn → p. There exists a unique sequence {an} ∈ [t1, t2] such that pn = γ(an).
By the compactness of [t1, t2], we can, after possibly passing to a subsequence, assume
that an → a ∈ [t1,, t2]. After possibly passing to another subsequence, we can further
assume that either an < a or an > a (since the case where an is eventually a is trivial).
In the subsequent discussion, we will assume that an < a. The case an > a is treated
similarly.
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By the continuity of γ, it follows that p = γ(a). Since a ∈ [t1, t2], we have that either
p ∈ A′ or p ∈ B′. If p ∈ A′, then we are done, so suppose that p ∈ B′. Since γ[an, a]
is path connected but γ(an) and γ(a) are in different path connected components of
S, it follows that γ[an, a] must leave S through [C,C2]. Let an < bn < a be such that
γ(bn) ∈ [C,C2]. Note that we can always find such a bn by the previous remark. But
then, bn → a, so that from the continuity of γ and the closedness of [C,C2] we get
γ(a) = limn γ(bn) ∈ [C,C2], which contradicts that γ(a) ∈ B′. This completes the
proof. �

Proposition 11. Let Ω and Λ be bounded, connected, simply connected open domains
in R2, equipped with the uniform measures µ and ν. Assume that Ω convex. Then, the
OTM T : Λ→ Ω admits a single-valued, continuous extension to Λ.

Proof. By considering ν as a measure on all of R2 supported on Λ, Brenier’s theorem
furnishes a globally Lipschitz convex function ϕ : R2 → R such that T = ∇ϕ on Λ (the
equality holds everywhere, instead of just almost everywhere, because of Caffarelli’s
regularity theory), and ∂ϕ(R2) ⊂ Ω since Ω is convex [1, Lemma 1(b)]. For x ∈ R2, the
set ∂ϕ(x) is convex [6, p. 215], and so if it is not a singleton it contains a segment that
is contained in the convex set Ω. However, this contradicts Property B stated in §3.
In particular, ϕ is differentiable on R2 and therefore is C1 [6, Theorem 25.5], implying
the statement. �
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